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Figure 1. (a) In large scene reconstruction from ground-level captures, there are frequent occlusions such as walls and buildings. (b)
Previous scene division methods are occlusion-agnostic, so they produce regions with severe internal occlusions, leading to poor recon-
struction results. (c) We propose an occlusion-aware division method to generate regions that better align with the scene layout (see the two
regions highlighted in yellow in (b) and (c)), thus improving the reconstruction quality significantly. Besides, we introduce a region-based
rendering technique to accelerate the rendering speed of 3D Gaussian splatting in a large scene with massive primitives.

Abstract

In large-scale scene reconstruction using 3D Gaussian
splatting, it is common to partition the scene into mul-
tiple smaller regions and reconstruct them individually.
However, existing division methods are occlusion-agnostic,
meaning that each region may contain areas with severe
occlusions. As a result, the cameras within those regions
are less correlated, leading to a low average contribution
to the overall reconstruction. In this paper, we propose an
occlusion-aware scene division strategy that clusters train-
ing cameras based on their positions and co-visibilities to
acquire multiple regions. Cameras in such regions exhibit

stronger correlations and a higher average contribution,
facilitating high-quality scene reconstruction. We further
propose a region-based rendering technique to accelerate
large scene rendering, which culls Gaussians invisible to
the region where the viewpoint is located. Such a tech-
nique significantly speeds up the rendering without com-
promising quality. Extensive experiments on multiple large
scenes show that our method achieves superior reconstruc-
tion results with faster rendering speed compared to exist-
ing state-of-the-art approaches. Project page: https:
//occlugaussian.github.io.
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1. Introduction
Large scene reconstruction needs to process a huge amount
of geometry and appearance information in 2D images to
recover 3D structures for novel view synthesis. It is cru-
cial in various applications, such as autonomous naviga-
tion [2, 9, 18, 47, 48], cultural heritage preservation [45],
and immersive virtual/augmented reality [9, 13, 35], etc.

Recent works in large scene reconstruction [22, 28, 32,
47, 49, 51] mostly take radiance fields as the basic 3D
representation, e.g., Neural Radiance Fields (NeRF) [33]
and 3D Gaussian Splatting (3DGS) [21]. NeRF-based ap-
proaches struggle to scale for large scenes with rich de-
tails, as their implicit representations demand substantial re-
sources for both training and rendering. 3DGS, a primitive-
based rasterization technique, also faces scalability issues
due to its memory-intensive representation, which quickly
exceeds the capacity of high-end GPUs. To address these
issues, a divide-and-conquer strategy is commonly applied,
which partitions the scene into several smaller and more
manageable regions. These regions are then individually
reconstructed and finally merged to a complete model. Ex-
isting scene division strategies are mainly based on camera
positions or point clouds [22, 28, 32, 47, 51]. While these
approaches are suitable for occlusion-free scenes like aerial
imagery or open spaces, they overlook scene layouts and
occlusions, which are commonly present in indoor environ-
ments, as shown in Fig. 1. Comparing the two regions yel-
low highlighted in Fig. 1(b) and Fig. 1(c), the former have
fewer training cameras with visible parts in common. The
cameras for one area occupy a certain amount of training
time and resources, but contribute little to the reconstruction
of the other. In other words, putting them together involves
too many training cameras whose average contribution to
the region’s reconstruction is thus significantly reduced.

In this paper, we introduce Occlusion-aware 3D Gaus-
sian splatting (OccluGaussian) for large scene recon-
struction and rendering. OccluGaussian incorporates an
occlusion-aware scene division strategy that considers
scene layout and occlusions. It enhances training efficiency
and resource allocation by focusing on cameras that sub-
stantially contribute to the reconstruction of specific areas,
rather than diluting efforts across less relevant regions, thus
finally improving the reconstruction quality. Specifically,
we first create an attributed view graph where nodes repre-
sent cameras with position features and edges denote their
visibility correlations, based on the co-visibilities of the
capturing cameras. Next, we apply a graph clustering algo-
rithm to this graph, yielding division results that align with
the scene layout, as shown in Fig. 1(c). Training cameras in
such regions have stronger correlations, enhancing their av-
erage contribution and leading to improved reconstruction
results. Finally, we reconstruct these regions individually
and merge them together to produce the complete model.

The reconstructed complete model often contains a huge
amount of Gaussians, leading to slow rendering speeds.
Existing methods [22, 32] often apply the level-of-details
(LoD) technique to dynamically prune unnecessary small
and distant Gaussians to boost the rendering efficiency.
However, these methods are still occlusion-agnostic and
process all 3D Gaussians within the view frustum of the
rendering camera. The occluded Gaussians that are invisi-
ble from the camera can be culled in advance to accelerate
rendering without any quality drop. To this end, we fur-
ther propose a region-based rendering technique to acceler-
ate the rendering of the large scene. Specifically, for each
region generated from our scene division strategy, we record
the visible 3D Gaussians of all training cameras located
in it. During rendering, we process only the recorded 3D
Gaussians of the region in which the rendering camera is lo-
cated. Since our scene division strategy is occlusion-aware,
we can effectively prune the occluded Gaussians that are
invisible from the camera. This technique achieves much
faster rendering without transition artifacts and noticeable
loss in quality.

Our contributions are summarized as follows:
• We propose an occlusion-aware scene division strategy

that considers the scene layout and camera co-visibilities.
The resulting regions barely contain occlusions, and the
corresponding training cameras have a higher average
contribution, leading to improved reconstruction results.

• We present a region-based rendering technique that accel-
erates 3D Gaussian splatting in large scenes. It eliminates
much of the time-consuming processing of invisible 3D
Gaussians, boosting rendering speeds without noticeable
quality degradation.

• We conduct extensive experiments on several large-scene
datasets, and demonstrate that OccluGaussian achieves
superior rendering quality and faster rendering speed
compared to previous state-of-the-art methods.

2. Related Work

2.1. Large Scene Reconstruction

3D reconstruction of large scenes from captured images has
been a popular research topic for decades. Traditional meth-
ods use structure-from-motion (SfM) algorithms to gen-
erate sparse point clouds of the scene or further extract
dense point clouds and meshes via multiview stereo meth-
ods [1, 14, 15, 17, 25, 40, 44, 46, 56]. Recently, Neural
Radiance Fields (NeRF) [33, 47, 51, 55] and 3D Gaussian
Splatting (3DGS) [6, 21, 28, 29, 31, 32, 50, 54] have been
widely applied to large-scale scene reconstruction, as they
outperform point clouds and meshes for novel view synthe-
sis. A divide-and-conquer strategy is commonly applied for
both NeRF and 3DGS methods. Such as, BlockNeRF [47],
as a pioneering work, explicitly splits city-scale scenes into
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multiple blocks, then optimizes individual NeRF model for
each, and seamlessly combining them by aligning their ap-
pearances. Mega-NeRF [49] also uses a grid-based division,
and assigns each pixel’s ray to different grids that the ray
intersects as it passes through the scene when optimizing
NeRF models. NeRF-XL [24] distributes the divided blocks
across multiple GPUs, allowing to reconstruct arbitrarily
large scenes with more parameters and faster speed. As for
3DGS-based methods, VastGaussian [28] uniformly divides
the scene and introduces a progressive partitioning strat-
egy to ensure sufficient supervision for each block. City-
Gaussian [32] splits a large scene in the contracted space
to balance the optimization workload for each block. Dis-
tributed training systems with multiple GPUs [6, 54] are
also explored to achieve faster optimization speed or hold
more Gaussian primitives to improve reconstruction qual-
ity. However, these division approaches are mainly based
on camera positions, and overlook the visibility correlations
between cameras, making them occlusion-agnostic. While
such methods work well for aerial captures in popular large-
scene datasets, they are less suitable for ground-level cap-
tures where occlusions occur frequently.

2.2. Camera Clustering
In camera pose estimation of large-scale scenes, partition-
ing methods are commonly utilized to cluster cameras and
segment scenes for parallel processing, which helps to re-
duce the computational complexity [20, 26, 37, 43, 52].
Some of them [5, 7, 37, 52, 56] use graph cut algorithms
to aggregate cameras acoording to their co-visibilities, e.g.,
Out-of-Core-BA [37] and COLMAP [44] use the Metis
graph partitioner [20]. Others [26, 43] use clustering algo-
rithms based on the features of images and 3D key points.
However, these methods often adopt only image or match-
ing features, which are not sufficient enough to avoid occlu-
sions within the segmented regions, as shown in Fig. 6. In
this paper, we propose a scene division technique that ex-
ploits both camera position and co-visibility information,
which is occlusion-aware and capable to align with the
scene layout to conduct partitioning.

2.3. 3DGS Rendering Acceleration
As large scenes contain a substantial number of Gaus-
sian primitives, it is crucial to speed up 3DGS render-
ing for real-time performance. Recently, several meth-
ods [12, 16, 19, 23, 34, 36, 38] have been proposed to com-
press 3DGS by reducing the number of Gaussian primitives,
which also helps accelerate rendering in large scenes. These
methods prune 3D Gaussians that contribute minimally to
the overall rendering, such as those with low opacities, to
minimize the impact on visual quality. Another popular ap-
proach for rendering acceleration customizes the rendering
for large scenes by using different level-of-details (LoD)

at varying distances. For example, Octree-GS [42] incor-
porates an octree structure to hierarchically organize 3D
Gaussians into multiple levels. CityGaussian [32] uses the
compression algorithm from LightGaussian [12] to generate
different detail levels in a block-wise manner. Hierarchical-
3DGS [22] introduces a novel hierarchy for 3DGS, enabling
efficient level-of-detail selection and interpolation. From a
different perspective compared to existing methods, Occlu-
Gaussian proposes a region-base rendering strategy, which
culls occluded Gaussians that are invisible to the viewpoint
in advance. This significantly reduces redundant computa-
tions and further boosts rendering speeds.

3. Method
We propose an occlusion-aware 3DGS framework (Oc-
cluGaussian) that achieves superior reconstruction qual-
ity and significantly faster rendering speed for large-scale
scenes. The overview of OccluGaussian is given in Fig. 2.
We first present a novel occlusion-aware scene division
strategy based on attributed graph clustering in Sec. 3.1.
Next, Sec. 3.2 details the optimization of each individual
region and the merging process to obtain a complete model.
Finally, we introduce a region-based rendering technique to
accelerate rendering in large scenes in Sec. 3.3.

3.1. Occlusion-Aware Scene Division
Previous division methods [22, 28, 32, 47, 49, 51] typi-
cally ignore the scene layout and divide the scene uniformly
based on camera positions or point clouds. A more effec-
tive division strategy should consider the occlusions in the
scene, so that the cameras in each region have strong corre-
lations and a higher average contribution to the reconstruc-
tion. Here, we introduce an occlusion-aware scene division
strategy, as illustrated in the top-left part of Fig. 2.
Attributed view graph. First, we create a view graph of
n posed training cameras, which is an undirected attributed
graph G = (V, E , X), where V , E and X denote the nodes,
the edges with weights, and the feature matrix, respectively.
Each node in V = {v1, v2, . . . , vn} corresponds to a cam-
era. To derive the edges E , we directly utilize the structure-
from-motion results obtained during the camera pose es-
timation. An edge is established between two cameras if
they share some visual contents in common, and we set its
weight as the number of matched feature points between
these two cameras. The set of edges E is finally represented
as an adjacency matrix A = [aij ] ∈ Rn×n. The feature
matrix X = [x1,x2, . . . ,xn]

⊤ ∈ Rn×d contains the 3D
coordinates of each camera with positional encoding [33].
Intuitively, occluded or distant cameras typically share min-
imal overlapped views, which can be distinguished in our
occlusion-aware view graph.
View graph clustering. Then, we split the view graph G
into multiple parts using graph clustering. We employ a
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Figure 2. Overview of OccluGaussian. Top left: To reconstruct a large scene, we divide it into multiple regions by adopting an occlusion-
aware scene division strategy. (a) We first create an attributed view graph from the posed cameras, where nodes represent cameras with
positional features, and edges represent visibility correlations between them. (b) A graph clustering algorithm is applied to the view graph
to cluster the cameras into multiple regions, and (c) we further refine them to obtain more balanced sizes. (d) The region boundaries are
calculated based on the clustered cameras. Each region is individually reconstructed and finally merged into a complete model. Bottom
left: Each region is reconstructed using three sets of training cameras: base cameras located inside the region, extended cameras providing
adequate visual content of the region, and border cameras used to constrain Gaussian primitives near the boundaries. Right: We introduce
a region-based rendering technique, which culls 3D Gaussians that are occluded from the region where the rendering viewpoint is located.
Furthermore, we subdivide the scene into smaller sub-regions with fewer essential 3D Gaussians. This approach effectively reduces
redundant computations and further boosts our rendering speed.

attributed graph clustering algorithm [53], which performs
graph convolution to generate smooth feature representa-
tions, followed by spectral clustering on the resulting fea-
tures to group the nodes. The clustering process is outlined
as follows:

Given the adjacency matrix A and the degree matrix
D = diag(d1, · · · , dn), di =

∑n
j=1 aij , the symmetrically

normalized graph Laplacian is defined as:

Ls = I −D− 1
2AD− 1

2 . (1)

Graph convolution is defined as the multiplication of a
graph signal f with a graph filter G:

f̄ = G · f , G = (I − 1

2
Ls)

r, (2)

where f̄ is the filtered graph signal, and r is a positive in-
teger. Each column of the feature matrix X can be consid-
ered as a graph signal. By performing graph convolution on
the feature matrix X , we obtain the filtered feature matrix
X̄ = GX . Then, we calculate the similarity matrix W̄ :

W̄ =
1

2
(|H|+

∣∣HT
∣∣), H = X̄X̄T . (3)

Since W̄ indicates the closeness between nodes in V , we
apply spectral clustering algorithm [39] on W̄ to cluster V ,
which correspond to the training cameras. Cameras that
share a large overlapping view or are spatially close are
clustered into the same region, as shown in Fig. 2(b).
Determining the clustering number. Most clustering al-
gorithms need a predefined number of clusters. To address
this, we propose an adaptive approach to determine the op-
timal number of clusters. The process starts by selecting
an initial cluster number K, enabling graph clustering to
generate K preliminary clusters. We then refine them by
splitting clusters that contain too many cameras by further
applying graph clustering, and by ignoring any cluster that
either has too few cameras or whose convex hull is entirely
covered by the convex hull of another cluster. These refine-
ment steps are applied recursively until all clusters achieve
a balanced number of cameras, thereby determining the op-
timal number of clusters for different scenes, (see Fig. 2(c)).
Boundary calculation. Finally, we calculate explicit
boundaries of each region based on its clustered cameras.
These boundaries are crucial for border expansion (Sec. 3.2)
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and region-based rendering (Sec. 3.3). We use a linear clas-
sification method [8] to derive decision functions as bound-
ary lines. Thanks to the occlusion-aware camera clustering,
these boundary lines closely align with the scene layout.

3.2. Individual Region Reconstruction
After the occlusion-aware scene division, we reconstruct
each region individually and finally merge them to form the
complete model. In this subsection, we detail the strategy
for selecting training cameras for each region and the algo-
rithm used to seamlessly merge these regions.
Training camera selection. As pointed out in [28, 32], it
is crucial to select appropriate training cameras for 3D re-
construction. Too few training cameras cannot provide suf-
ficient supervision, while too many irrelevant cameras will
waste computational resources and reduce the average con-
tribution of every camera. We select three sets of training
cameras as shown in the bottom-left part of Fig. 2: 1) The
base set, whose cameras are located within the region. 2)
The extended set, whose cameras are outside the region but
capture adequate visible content of it. We follow [32] to
select the extended cameras based on their visibility con-
tribution to the region. 3) The border set, whose cameras
face the region but are occluded. These cameras help con-
strain Gaussian primitives near the boundaries for the final
seamless merging. Without the border set, these Gaussian
primitives can become very large or elongated, resulting in
floaters or artifacts (see the qualitative results in the sup-
plementary material). Compared to existing methods, our
occlusion-aware scene division strategy requires fewer ex-
tended cameras for adequate supervision to reconstruct the
target region, increasing the average contribution per cam-
era and thereby improving reconstruction quality.
Seamless region merging. We optimize 3D Gaussians for
each region individually using its selected training cameras.
And then, we remove all Gaussian primitives from each re-
gion that lie outside the region to create sharp borders. Fi-
nally, these regions are merged to form a complete model.

3.3. Region-Based Rendering
Large scenes contain a substantial number of 3D Gaus-
sians, making rendering computationally expensive and
slow. Considering that many Gaussian primitives in the
scene are occluded, invisible to the viewpoint, culling them
in advance can significantly reduce the processing load,
thereby accelerating rendering speeds without sacrificing
visual quality. Therefore, leveraging our occlusion-aware
scene division, we propose a region-based rendering strat-
egy that culls invisible Gaussians for efficient rendering in
large scenes, as shown in the right part of Fig. 2.
Region-based visibility calculation. Consider a large
scene reconstructed by Ng 3D Gaussians and divided into
k regions {Ri}ki=1. For each region Rj , we define a visi-

bility mask Mj = {mj
i ∈ {0, 1}}Ng

i=1 for all Ng 3D Gaus-
sians, indicating their visibility from any training viewpoint
in Rj . To derive Mj , we perform 3DGS rasterization for
each camera that is clustered into Rj , and calculate each
3D Gaussian i’s maximal accumulated weight as its contri-
bution to the rendered image. We mark mj

i = 1 if 3D Gaus-
sian i’s contribution to any pixel exceeds 0.01. Note that we
generate both the original view and the backside view from
the camera position to comprehensively collect visible 3D
Gaussians for each region. After iterating over all cameras
in Rj , Gaussians with mj

i = 0 are treated as occluded and
can be culled in advance when rendering.
Region subdivision. Viewpoints near region borders often
observe too many 3D Gaussians from neighboring regions,
leading to redundant computations when rendering the in-
terior of a region. To address this issue, we further sub-
divide each region into smaller sub-regions when deriving
visibility masks: one interior sub-region, and several border
sub-regions. First, we identify the boundary lines between
the region and its neighboring regions. Then, we shrink the
boundary lines inward by 0.1dmax, where dmax is the max-
imal distance between two cameras within the region, to
obtain the corresponding border sub-regions. The remain-
ing area in the region, excluding all the border sub-regions,
forms the interior sub-region. Our region subdivision strat-
egy leads to more compact region-based visibility masks,
and thus further boosts the rendering speed.
Rendering with region-based culling. To render at an ar-
bitrary viewpoint in the complete model, we first identify
the region Rj where the viewpoint belongs to, then use the
corresponding visibility mask Mj to cull the occluded 3D
Gaussians, and finally perform 3DGS rasterization for the
remaining 3D Gaussians to generate the rendering image.
By knowing the occlusions between regions, our culling
strategy retains only the minimal set of necessary 3D Gaus-
sians for rendering within each region. This approach leads
to significant rendering speedup without noticeable quality
drop, as shown in the supplementary material.

4. Experiments

4.1. Experimental Setup

Dataset. Most existing large-scene datasets [27, 30] are
primarily captured from aerial perspectives and thus with
rare occlusions. Therefore, we construct a new dataset
called OccluScene3D, containing three large-scale scenes in
a campus with complex layouts and significant occlusions:
GALLERY, CANTEEN and CLASSBUILDING. More details
of OccluScene3D are in the supplementary material. We
also assess our method on the Zip-NeRF dataset [4], includ-
ing four large-scale scenes such as apartments and houses.
To show the generality of our method, we further conduct
experiments on occlusion-free scenes in the Mill-19 [49]
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Figure 3. Qualitative comparison with SOTA methods on three large scenes in the OccluScene3D dataset.

Figure 4. Qualitative comparison with SOTA methods on three large scenes in the Zip-NeRF dataset.

and UrbanScene3D [30] datasets.
Implementation details. The models are optimized for
90,000 iterations with densification from iteration 1,500 to
45,000 at intervals of 100. We adopt the appearance model-
ing in VastGaussian [28] to fit appearance variations across
captured images. For clustering the view graph, we set a
fixed initial cluster number K = 10. We iteratively refine
the number of clusters until the camera count in each cluster
falls within [Mc−σcMc,Mc+σcMc], where σc = 0.5 and
Mc is the average camera count across all clusters.
Baselines. On the OccluScene3D dataset, we compare with
scalable 3DGS-based methods [21, 22, 28, 32]. Since Vast-
Gaussian [28] is not open-sourced, we re-implement its
scene division strategy and keep all other hyperparameters
the same as ours during 3DGS optimization. For the Zip-

NeRF dataset, we compare with methods that have evalu-
ated on it [4, 10, 38, 41]. Following the evaluation protocol
in RadSplat [38], we optimize two models: one for visu-
alization, and another for quantitative analysis, excluding
appearance modeling. We do not use the monocular depth
prior in Hierarchical-GS [22] for fairness.
Metrics. We evaluate the rendering quality using three
commonly-used quantitative metrics: SSIM, PSNR and
LPIPS. We also report the average rendering speed at 1080p
resolution in frames per second (FPS).

4.2. Result Analysis
Reconstruction quality and rendering speeds. We
present quantitative results for occluded scene reconstruc-
tion in Tab. 1 and Tab. 2. We are unable to evaluate
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Scene GALLERY CANTEEN CLASSBUILDING

Metrics PSNR SSIM LPIPS FPS PSNR SSIM LPIPS FPS PSNR SSIM LPIPS FPS

VastGaussian* [28] 25.09 0.903 0.095 215.22 24.60 0.890 0.105 211.02 24.05 0.884 0.111 269.97
CityGaussian [32] 21.98 0.808 0.294 119.86 20.41 0.794 0.275 54.02 20.48 0.840 0.244 65.57
Hierarchical-GS [22] 22.23 0.800 0.182 216.00 22.71 0.825 0.178 199.33 23.87 0.881 0.128 198.58
3DGS [21] 21.36 0.843 0.213 344.92 21.86 0.847 0.183 525.93 19.41 0.871 0.186 395.13

OccluGaussian 25.81 0.903 0.094 288.94 25.25 0.900 0.100 311.59 25.33 0.921 0.083 339.64

Table 1. Quantitative comparison on the OccluScene3D dataset. We report SSIM ↑, PSNR ↑, LPIPS ↓ and FPS ↑ on the test views. The
best and second best results are highlighted. * denotes that it is our re-implementation of VastGaussian.

Metrics PSNR SSIM LPIPS

MERF [41] 23.49 0.747 0.445
SMERF [10] 27.28 0.829 0.340
Zip-NeRF [4] 27.37 0.836 0.305

3DGS [21] 25.50 0.809 0.369
RadSplat [38] 26.17 0.839 0.364

OccluGaussian 28.63 0.880 0.281

Table 2. Quantitative comparison on the Zip-NeRF dataset.

Scene MILL-19 URBANSCENE3D

Metrics PSNR SSIM LPIPS PSNR SSIM LPIPS

Mega-NeRF [49] 23.09 0.572 0.393 24.35 0.659 0.369
Switch-NeRF [55] 23.50 0.590 0.355 24.84 0.678 0.333
Grid-NeRF [51] 24.37 0.807 0.142 24.94 0.787 0.158

Modified 3DGS [28] 24.90 0.785 0.163 24.18 0.793 0.199
CityGaussian [32] 24.29 0.771 0.166 23.87 0.821 0.161
Hierarchical-GS [22] 22.95 0.739 0.291 - - -
DOGS [6] 24.26 0.762 0.231 23.40 0.742 0.280
VastGaussian [28] 25.21 0.814 0.131 25.69 0.851 0.132

OccluGaussian 25.97 0.854 0.103 25.75 0.858 0.125

Table 3. Quantitative comparison on aerial capture datasets, Mill-
19 and UrbanScene3D. We fail to test Hierarchical-GS [22] on the
URBANSCENE3D dataset due to an out-of-memory issue.

DOGS [6] on the OccluScene3D and Zip-NeRF datasets
due to insufficient GPU resources required from its dis-
tributed optimization strategy. OccluGaussian almost sig-
nificantly outperforms the compared methods in all metrics,
especially in PSNR. Regarding FPS, our method is faster
than all methods except the original 3DGS [21], due to its
less detailed reconstruction and fewer Gaussian primitives.
Visual comparisons in Fig. 3 and Fig. 4 illustrate Occlu-
Gaussian’s superior detail in rendering. Additionally, Fig. 5
shows OccluGaussian’s scene division aligns better with the
scene layout. More visualizations are provided in the sup-
plementary material.

In Tab. 3, we validate our method on occlusion-free
scenes using the Mill-19 [49] and UrbanScene3D [30]
datasets. Our method maintains a clear advantage, high-
lighting the generality of our approach. These results shows
the effectiveness of our scene division strategy, which en-
hances the correlation among training cameras within each

Figure 5. Different division results on the CANTEEN scene (upper)
and BERLIN scene (lower). Green lines denote the physical walls,
while black lines denote the boundaries of the divided regions. No-
tably, CityGaussian’s division is projected onto a contracted space.

region and improves reconstruction quality.

4.3. Comparison of Camera Clustering Methods
We compare various camera clustering methods on the
GALLERY scene in the OccluScene3D dataset. As shown
in Fig. 6, grid-based methods partition scenes into grids
without considering clustering features and occlusions. The
K-means algorithm, which relies solely on camera po-
sition features, is also oblivious to occlusions and per-
forms worse when incorporating image features extracted
by NetVLAD [3], failing to extract region boundaries. DB-
SCAN [11] does not require an initial cluster number, but
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Figure 6. Scene division results by different methods are presented
with points for cameras, color-coded by their respective regions.

Method PSNR↑ SSIM↑ LPIPS↓

Grid-based 24.58 0.892 0.104

K-means (CamP) 24.94 0.903 0.094
K-means (CamPN) - - -
Metis [20] 25.02 0.903 0.097
DBSCAN [11] 25.00 0.898 0.111

Ours 25.46 0.908 0.094

Table 4. Comparison of clustering methods. ‘CamP’ denotes cam-
era position, ‘CamPN’ denotes camera position + NetVLAD. K-
means (CamPN) fails due to its poor clustering results that prevent
effective distinctions by the classification model.

PSNR SSIM LPIPS FPS

w/o RBR & RSD 25.81 0.903 0.099 189.52
w/o RSD 25.81 0.903 0.099 271.79
Full 25.81 0.903 0.099 288.94

Table 5. Ablation study of the region-based rendering on the
GALLERY scene. ‘RBR’ denotes vanilla region-based rendering;
‘RSD’ denotes region subdivision in our region-based rendering.

produces unevenly sized clusters and also lacks occlusion
awareness. Metis [20] provides slightly better results by
conducting graph clustering, but severe occlusions per-
sist in the partitioned regions. We further perform 3DGS
optimization based on these clustering results, as shown
in Tab. 4, which demonstrates that our clustering method
outperforms others in all metrics.

4.4. Ablation Study
Region-based rendering. We ablate our region-based ren-
dering on the GALLERY scene, as shown in Tab. 5. Our
region-based culling strategy significantly enhances render-
ing speeds without noticeable loss in visual quality. Ad-
ditionally, the proposed region subdivision technique fur-
ther accelerates rendering. It is important to note that our

Canteen Berlin

PSNR LPIPS #Blocks PSNR LPIPS #Blocks

VastGaussian [28] 24.60 0.105 9 29.48 0.085 9
CityGaussian [32] 24.16 0.114 9 28.68 0.091 9

Hierarchical-GS [22] 23.68 0.131 9 27.26 0.105 9
DOGS [6] 24.66 0.108 9 28.15 0.095 9

OccluGaussian 25.25 0.100 5 30.37 0.076 8

Table 6. Different division strategies used in OccluGaussian.

Initial K Final K PSNR SSIM LPIPS

7 6 30.90 0.898 0.126
10 7 31.33 0.902 0.121
15 8 31.35 0.901 0.121

Table 7. Different initial clustering numbers K on the NYC scene
of Zip-NeRF dataset.

culling strategy automatically removes Gaussian primitives
with minimal contribution, reducing the overall number of
Gaussian primitives in the final reconstructed model.
Division strategy. To demonstrate the effectiveness of our
occlusion-aware scene division, we evaluate it alongside
VastGaussian, CityGaussian, Hierarchical-GS, and DOGS
by replacing our scene division with theirs while keeping
the same hyperparameters as ours for 3DGS optimization.
We test on the CANTEEN scene of OccluScene3D dataset
and the BERLIN scene of Zip-NeRF. Results in Tab. 6 shows
that our occlusion-aware scene division still demonstrates
a significant advantage. Additional visualizations can be
found in the supplementary material.
Initial clustering numbers. To show the robustness of our
method, we vary the manually-set initial clustering number
K on the NYC scene of Zip-NeRF dataset and find similar
performance trends, as shown in Tab. 7. However, for huge
scenes with dozens or hundreds of separated regions, setting
an appropriate initial clustering number K remains crucial,
which we leave for future exploration.

5. Conclusion
This paper presents OccluGaussian, a novel approach
for high-quality reconstruction and real-time rendering of
large-scale scenes. We propose an occlusion-aware scene
division strategy that enhances reconstruction quality by op-
timizing the contribution of training cameras within each
region. Furthermore, we propose a region-based rendering
strategy that discards occluded 3D Gaussians, significantly
accelerating rendering for large-scale scenes.
Limitation. While OccluGaussian has made significant
progress, limitations remain. For instance, our camera clus-
tering starts with a fixed initial number, which works well in
our experiments but may be insufficient for extremely large
scenes. Future work will focus on dynamically determine
the initial clustering number based on the number of train-
ing cameras to enhance robustness and scalability.
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Supplementary Material

Figure 7. Comparative analysis of scene division on GALLERY,
CANTEEN and CLASSBUILDING in the OcclusionScene3D
dataset. Notably, CityGaussian’s division is projected onto a con-
tracted space.

Figure 8. Comparative analysis of scene division on ALAMEDA,
BERLIN, LONDON and NYC in the Zip-NeRF dataset. Notably,
CityGaussian’s division is projected onto a contracted space.

6. More Details of the OccluScene3D Dataset
There are three scenes in the OccluScene3D dataset:
GALLERY, CANTEEN and CLASSBUILDING. All the
videos are recorded by a mobile phone with the wide-angle
mode and landscape orientation at a frame rate of 60 Hz. We
uniformly extract 3% of the frames, and use COLMAP [44]
to estimate the camera intrinsic and extrinsic parameters.
More details are shown in Tab. 8.

7. Additional Experimental Results
7.1. Additional Quantitative Analysis
Scene division strategy analysis. We present a compar-
ison of scene division on the OccluScene3D dataset and
the Zip-NeRF dataset among VastGaussian [28], CityGaus-
sian [32], Hierarchical-GS [22], DOGS [6], and Occlu-

Scene Area (m2) #Video Duration (min) #Image

GALLERY 2500 71 174 9881
CANTEEN 1500 46 111 9034
CLASSBUILDING 1000 18 76 9118

Table 8. Statistics of the OccluScene3D dataset with three real
scenes. Area: covered area; #Video: total number of videos; Du-
ration: total duration of all the videos; #Image: total number of
sampled images for reconstruction.

PSNR Train (m) Mem (GB) #GS (M) FPS

VastGaussian 24.58 49.97 15.0 5.5 232
CityGaussian 20.96 106.35 8.2 6.4 80

Hierarchical-GS 22.94 190.36 30.5 40.0 205
3DGS 20.88 86.8 23.9 0.9 422

OccluGaussian 25.46 48.26 12.2 3.4 313

Table 9. More quantitative results on OccluScene3D dataset.

Gaussian in Fig. 7 and Fig. 8. The results demonstrate
that the scene divisions produced by OccluGaussian bet-
ter align with scene layouts. Consequently, OccluGaussian
achieves superior reconstruction quality, which is proven by
performing 3DGS optimization with the same hyperparam-
eters across different scene division strategies, as illustrated
in Fig. 9. We also present the division results of Occlu-
Gaussion on the Mill-19 dataset [49] and UrbanScene3D
dataset [30] in Fig. 10, which demonstrate that our method
also generalizes well in aerial capture scenes without occlu-
sions.
Detailed quantitative analysis of OccluGaussian. We
present the average PSNR, training time, allocated mem-
ory, number of gaussians and FPS on OccluScene3D dataset
in Tab. 9. We validate the methods on the Mill-19 [49],
UrbanScene3D [30] and Zip-NeRF [4] datasets in Tab. 10
and Tab. 11. It can be observed that OccluGaussian outper-
forms others in terms of LPIPS among all the datasets. It
also overall holds a clear advantage over existing methods
in other metrics, highlighting its generality. These results
show the effectiveness of our scene division strategy, which
strengthens the correlations among training cameras within
each region, and achieves a higher average contribution to
the reconstruction results.
Extended camera ratios. We further compare the extended
camera ratios of division strategy with those from Vast-
Gaussian [28], CityGaussian [32], Hierarchical-GS [22],
DOGS [6] and OccluGaussian, as shown in Tab. 12. This ra-
tio is defined as the total number of extended cameras across

1



Figure 9. Quantitative evaluation of different division strategies applied under the same 3DGS optimization hyperparameters. Lines from
top to bottom are the GALLERY, and CLASSBUILDING scenes from the OccluScene3D dataset, as well as the BERLIN scene from the
Zip-NeRF dataset.

Scene MILL-19 URBANSCENE3D

BUILDING RUBBLE CAMPUS RESIDENCE SCI-ART

Metrics PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

VastGaussian [28] 23.50 0.804 0.130 26.92 0.823 0.132 26.00 0.816 0.151 24.25 0.852 0.124 26.81 0.885 0.121
CityGaussian [32] 22.59 0.757 0.174 25.98 0.784 0.158 - - - 23.25 0.806 0.156 24.49 0.836 0.167
Hierarchical-GS [22] 21.25 0.723 0.297 24.64 0.755 0.284 - - - - - - - - -
3DGS [21] 23.01 0.769 0.164 26.78 0.800 0.161 23.89 0.712 0.289 23.40 0.825 0.142 25.24 0.843 0.166

OccluGaussian [32] 24.77 0.853 0.100 27.16 0.854 0.105 26.60 0.836 0.139 24.24 0.846 0.122 26.42 0.890 0.113

Table 10. Quantitative evaluation of our method compared to previous work on the Mill-19 [49] and UrbanScene3D [30] datasets. The
best and second best results are highlighted. Due to an out-of-memory issue, we were unable to test Hierarchical-GS [22] on the URBAN-
SCENE3D dataset and CityGaussian on the CAMPUS scene.

Figure 10. Scene division results by OccluGaussian on the Mill-19
and UrbanScene3D datasets.

all regions divided by the total number of training cameras.
A smaller ratio of extended cameras indicates that each
partitioned region is more self-contained and can be well-
reconstructed with fewer training iterations. Conversely,
if region A and B are divided into occlusion-agnostic re-
gions, many extended cameras for region A will be inside
region B, and vice versa. In other words, these two sets of
training cameras are almost the same (all cameras), mak-
ing it difficult to achieve good reconstruction with limited
training iterations. Compared to VastGaussian, CityGaus-
sian, Hierarchical-GS and DOGS, our extended cameras are
greatly reduced by our occlusion-aware division strategy,
which leads to a higher average contribution of all train-
ing cameras for the reconstruction of each region. This ad-

Figure 11. Division results of different camera count ranges for
each cluster. The green lines denote the physical walls, and the
red lines denote the boundaries of the divided regions.

vantage eventually leads to improved reconstruction qual-
ity, as proven by the results obtained when replacing our
scene division strategy with others in our 3DGS optimiza-
tion pipeline, as shown in Tab. 12.

7.2. Additional Ablations
Cluster number refinement. To obtain our final scene di-
vision, we iteratively refine the result from the graph clus-
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BERLIN LONDON NYC ALAMEDA

Metrics PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3DGS [21] 28.52 0.887 0.325 27.05 0.829 0.342 28.21 0.844 0.321 25.35 0.758 0.37
SMERF [10] 28.52 0.887 0.325 27.05 0.829 0.342 28.21 0.844 0.321 25.35 0.758 0.37
Zip-NeRF [4] 28.59 0.891 0.297 27.06 0.835 0.304 28.42 0.850 0.281 25.41 0.767 0.338

OccluGaussian 30.37 0.937 0.076 28.06 0.868 0.141 31.33 0.902 0.121 24.75 0.814 0.201

Table 11. Quantitative evaluation of our method compared to previous work on the Zip-NeRF [4] datasets.

PSNR Base cam. Extended cam. Ratio

VastGaussian [28] 24.58 9119 8921 97.8%
CityGaussian [32] 22.50 9119 5371 58.90%
Hierarchical-GS [22] 23.93 9119 6808 74.66%
DOGS [6] 25.11 9119 8331 91.36%

OccluGaussian 25.81 9119 4232 46.41%

Table 12. Extended camera comparison on OccluScene3D.

#Clusters Metrics

Initial K Final K PSNR SSIM LPIPS

Fixed cluster number 10 10 28.092 0.870 0.141
Mc ± 0.3Mc 10 8 28.090 0.870 0.141
Mc ± 0.5Mc 10 7 28.060 0.868 0.141
Mc ± 0.7Mc 10 6 28.043 0.862 0.142

Table 13. Quantitative results of different camera count ranges.

Figure 12. Ablation study of features in our attributed scene graph.

tering algorithm by splitting or ignoring clusters until the
camera count in each cluster falls within [Mc−σcMc,Mc+
σcMc], where Mc is the average camera count across all
clusters. Here we explore the influence with different σc

choices, as shown in Fig. 11 and Tab. 13. The division re-
sults remain occlusion-aware, and similar performances are
obtained. Note that without this refinement step, compa-
rable reconstruction quality can still be achieved; however,
more GPU resources are required as more regions need to
be reconstructed.
Features in the scene graph. As shown in Fig. 12, both
the position features in the node attribute and the visibility
correlations encoded by the edge weight in the scene graph
are important to achieve occlusion-aware division.
Region-based rendering. The ablation study of our region-
based rendering is conducted on the OccluScene3D dataset,

Figure 13. Quantitative evaluation of region-based rendering. The
right-most image uses color coding to represent pixel differences:
red for |A−B| > 1, blue for |A−B| = 1, and gray for A-
B = 0. The difference between A and B is almost less than 1
pixel. Our approach achieves substantial enhancements in render-
ing speed without a perceptible loss in image quality.

and the visual comparisons are shown in Fig. 13. Our
region-based culling strategy substantially enhances render-
ing speeds without any perceptible loss in visual quality.
Moreover, the proposed region subdivision technique fur-
ther accelerates rendering.
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